Thursday 24 May 2018

Energiöverenskommelse utan effekt


I framtiden kommer solen att fixa allting, utan nästan några kostnader, utan miljöproblem och det bästa av allt – utan slut. Så låter det ibland.

Men energifrågan är lite mer komplicerad än reklamen. Det visar inte minst energiöverenskommelsen där Socialdemokraterna, Miljöpartiet, Moderaterna, Centerpartiet och Kristdemokraterna 2016 kom överens om en "långsiktig energipolitik". Överenskommelsen reser fler frågor än svar, inte minst för kärnkraftens framtid. Trots målet om förnybar elproduktion ska nya reaktorer kunna byggas på samma platser som de gamla. Följande formulering gör inte saken tydligare: »Målet år 2040 är 100% förnybar elproduktion. Detta är ett mål, inte ett stopp- datum som förbjuder kärnkraft och innebär inte heller en stängning av kärnkraft med politiska beslut.«
 


Det är lätt att tro att Sverige har läget under kontroll när det gäller den framtida energiförsörjningen och vi ligger långt framme tack vare en stor andel vattenkraft och biobränsle. Ändå kommer omställningen att bli radikal: Kärnkraften och fossila bränslen ska avvecklas, samtidigt som elektrifieringen av transporter, industriprocesser med mera förväntas öka kraftigt. Underhållet inom energisektorn har dessutom varit lågt under en lång tid och enligt konsultbolaget Sweco kommer investeringar på 1500 miljarder kronor att behövas fram till 2040. Det motsvarar 65 miljarder kronor per år.
 
Sverige och Norge har blivit populära länder för stora datacenter. Stabil politik, tillgång på mark, infrastruktur och billig elkraft samt naturlig kyla är konkurrensfördelar. Facebook och Amazon är redan här, Google har köpt ett stort område i Horndal och kinesiska Alibaba tittar också mot Sverige. Redan nu uppskattas förbrukningen i datacenter till minst 3 TWh årligen, det vill säga ett par procent av elförbrukningen. Facebooks tre datacenter i Luleå uppges förbruka 1 TWh, när de är fullt utbyggda.

När energitunga industrier som stålverk och cementfabriker konverterar från fossila bränslen ökar också elförbrukningen kraftigt. Den förväntat växande flottan av elbilar kommer också att märkas av. Forskare från IVL har räknat ut att det krävs mellan 100 och 170 kWh för att tillverka batterikapacitet på 1 kWh. För ett 30 kWh elbilsbatteri som är standard i Nissan Leaf går det åt 4500 kWh. Sedan tillkommer  laddningen. Det finns inga officiella siffror för hur mycket ström som laddningen av elbilar kommer att dra, men en uppskattning är att det ligger någonstans mellan 10 och 20 TWh per år, vilket motsvarar 8–17 procent av dagens elanvändning.
 
Även hushållen ökar sin elanvändning. Visserligen har elen för uppvärmning minskat sedan 1990 men per person gör vi av med dubbelt så mycket el på våra apparater som 1970. Apparaterna har blivit energisnålare, men fler och används oftare.
 
Kan vi då inte lösa allt genom att bara koppla upp oss mot solen, som en del hävdar? Utan tvekan kan solenergi vara intressant för privatpersoner och för vissa speciella applikationer, men få bedömare tror att solen kommer att stå för mer än 5 procent av elanvändningen. Även om många kraftbolag gärna säljer solcellspaket och tar emot solströmmen över nätet, så satsar inte företagen själva på några egna anläggningar.
 

Det beror inte på att el från solceller är för dyr, tvärtom är den billig, däremot är det dyrt att lagra el och med tanke på att solen i Sverige lyser som bäst när energibehovet är som lägst, är lagringsbehovet mycket stort.

 Vindkraften är den energikälla som har störst potential och som samtidigt inte är politiskt alltför kontroversiell. Vindkraften uppskattas kunna producera mellan 40 och 60 TWh år 2050, det vill säga mellan tre och fyra gånger så mycket som i dag. Men helt säkert är det inte. Svenska Kraftnät konstaterar lakoniskt i sin nätutvecklingsplan 2016–2025 att »vad vindkraften kan tänkas producera 2050 har vi i dag ingen aning om.«
 
Det finns i storleksordningen 3 500 MW installerad eleffekt från kraftvärme i de svenska fjärrvärmenäten, men många anläggningar är gamla och kommer att tas ur drift. Nya anläggningar blir troligen rena hetvattenanläggningar utan potential att leverera el, och även när de kan leverera el är det inte säkert att de prioriterar det. 


Vad kraftvärmeverken ska eldas med är en öppen fråga. I dagsläget står sopor för en stor andel, närmare sex miljoner ton, men även udda bränslen som olivkärnor, bildäck, hästgödsel och havre och slaktavfall förekommer. Helt dominerande är dock skogsråvara, nästan 35 miljoner kubikmeter spån, flis och träpellets användes i värmeverken 2016, lika mycket som behövs för att fylla Globen 55 gånger. Snacka om vedhög! Men trots att Sverige har så mycket skogsmark och trots att man talar om att skogen också skall vara råvara till flytande biobränsle till fordon så importerar vi stora delar av biobränslet.
 
Både vind och sol ger ojämn tillgång på energi. Den stora utmaningen framöver är därför inte den totala energiförsörjningen utan att klara av »effektbalansen«, att balansera mellan tillgång och efterfrågan vid varje tillfälle.
Det finns olika strategier för att få till effektbalans. Ett sätt är att anpassa energibehov efter tillgång, att vi helt enkelt tvättar på natten och att smarta vitvaror slås av en stund när förbrukningen är som störst. Det här förutsätter stora skillnader i elpriserna och är det något som alla är överens om så är det att elpriserna kommer att variera betydligt mera framöver.

Energilagring är ett annat sätt att jämna ut toppar och dalar. Litiumjonbatterierna har betytt mycket för utvecklingen av bärbara datorer, mobiltelefoner, sladdlösa borrmaskiner och nu också för elbilar. Ett litiumjonbatteri lagrar dock bara mellan 100 och 200 Wh per kilo, och det är inte sannolikt att detta kan förbättras radikalt. Det finns också frågetecken runt råvarornas utvinning och återvinning. Helt nya typer av batterier är under utveckling men det är för tidigt att avgöra hur mycket batteritekniken kan förbättras.

Att driva ett helt energisystem, även för korta stunder, är något helt annat än att driva en bil. Den största batterianläggningen i världen har just färdigställts i Australien där Tesla har kopplat ihop hundratals av sina så kallade powerpack till ett superbatteri stort som en fotbollsplan som kan leverera 100 MW. Jättebatteriet räcker för att försörja 30 000 hushåll med el, men bara i en timme. Trots alla framsteg är batterilagring av el fortfarande dyrt. Storskalig lagring i batterier kostar i dagsläget mer än 2000 kronor per kWh lagringskapacitet.
 
Vattenkraftsdammar är också enorma lager av energi. Suorvadammen i Luleälven har en energikapacitet motsvarande en miljard av de batterier som sitter i Teslas bilar. Till skillnad från ett batteri kan dock inte dammen ”laddas” varje dag, men det finns också sådana lösningar. Genom att pumpa vatten från lägre till högre nivå när det finns ett överskott på billig el och sedan använda vattnet för att driva ett kraftverk kan man lagra energi. Sådana pumpkraftverk bygger på väl beprövad teknik. Begränsningen är framför allt att man behöver ha stora vattenlager både uppströms och nedströms, vilket innebär ytterligare ingrepp i naturen. Det är få av de existerande vattenkraftverken i Sverige som kan byggas om till pumpkraft. 

Det är troligen veden som får stå för mycket av energilagringen också i framtiden, precis som i vår vedbod.  


Ovanstående är delar av ett reportage som Ann-Helen Meyer von Bremen och jag skrev för Tiden. Läs hela här.

No comments: